Survey of Tourniquet Use in Upper and Lower Limb Surgery

Posted on January 16, 2014. Filed under: Survey of Tourniquet Use, Tourniquet Safety | Tags: , , , , , , |

A recent publication in the Irish Journal of Medical Science [1] surveyed upper and lower limb tourniquet use among Irish orthopaedic surgeons.

Ninety-two Irish orthopaedic consultants were sent a 15-survey question on tourniquet use.  Sixty respondents returned a completed survey of which 49 used both upper arm and thigh tourniquets.

The survey showed that few surgeons use contoured tourniquet cuffs on patient limbs and a wide range of “most commonly used cuff pressures” was reported with few surgeons taking limb occlusion pressure (LOP) or systolic blood pressure into consideration when selecting tourniquet pressure.

Accordingly, tourniquet-related problems and concerns were focused on cuff fit and nerve injury: Thigh cuff users reported higher rates of poor cuff fit when compared with upper arm cuff users (Table 4). The two respondents who used a contoured cuff for both upper arm and thigh reported that they rarely or never experienced poor cuff fit. Eighty-five percent of respondents were concerned with a tourniquet-related complication during tourniquet use. Nerve injury was the most common concern, with 41 % of respondents ranking nerve injury as their primary concern when using a tourniquet.”

Based on the results of the survey, the recently published study concluded that “there is a wide variation in tourniquet practice by Irish orthopaedic surgeons.  Based on published studies of LOPs, this study suggests that some of the tourniquet cuff inflation pressures used may be higher than necessary.  Guidelines for optimising cuff pressure and technique should be established to minimise the risk of complications.”

The full abstract of the publication in the Irish Journal of Medical Science is given below. [1]


Background:  Tourniquet use in orthopaedic surgery is common practice. However, the technique varies among Irish orthopaedic surgeons and there are no standard guidelines. 

Aim: To analyse trends in tourniquet use among Irish orthopaedic surgeons. 

Methods:  Ninety-two Irish orthopaedic consultants were sent a 15-survey question about tourniquet use by post. 

Results:  Sixty respondents returned a completed survey, of which 49 (81% of respondents) used both upper arm and thigh tourniquets. A variation in tourniquet pressure settings and techniques used was reported. Thirty-nine surgeons (65% of respondents) use a tourniquet pressure range of 201-250 mmHg for the upper arm and 30 surgeons (50% of respondents) use a range of 251-300 mmHg for the thigh. Thirty-six surgeons (60 % of respondents) experienced a complication secondary to tourniquet use, the most common complications being nerve and skin injury. 

Conclusions:  Based on published studies of limb occlusion pressures, this study suggests that some of the tourniquet cuff inflation pressures used may be higher than necessary. Guidelines for optimising cuff pressure and technique should be established to minimise the risk of complications. This study may help determine direction for future research on tourniquet use.



[1] Cunningham L, McCarthy T, O’Byrne J. A survey of upper and lower limb tourniquet use among Irish orthopaedic surgeons. Ir J Med Sci. 2013 Sep;182(3):325-30.

Read Full Post | Make a Comment ( None so far )

Safety and Efficacy Advances in Surgical Tourniquets

Posted on November 22, 2013. Filed under: Safety and Efficacy Advances | Tags: , , , , , , , , , , , , |

Jim McEwen PhD


New AORN Recommended Practices for Surgical Tourniquets

All surgical tourniquet users should be aware that on June 15, 2013 the AORN (Association of periOperative Registered Nurses) published a major update of its recommended practices on pneumatic tourniquet used in surgery.   These guidelines are widely used and followed, especially in accreditation of surgical facilities.  Many changes in recommended practices have been made, and new topics have been added, as outlined below and as given at .   The RP is available for purchase at


Comparative Effectiveness  

Outpatient surgical staff and facilities are paying increased attention to ‘comparative effectiveness’.   Comparative effectiveness research (CER) is a method of comparing different devices and treatments to determine which is the most effective.  The growth of CER highlights the value of research and published evidence quantifying the benefits of medical devices, and a growing body of evidence supports recent advances seen in surgical tourniquet instruments, cuffs and accessories.  Updated information on recent publications and evidence can be found at and in the 2013 AORN Recommended Practices.

Two disturbing developments related to comparative effectiveness have occurred recently.  First, counterfeit tourniquet products have been seen. These counterfeit products have markings and appearances that mimic existing, proven and authentic products, but their quality, performance and safety are suspect or unknown.  Second, cloned tourniquet products have been seen in some countries.  While cloned products do not bear counterfeit markings, the fact that their physical appearance is similar to authentic products may lead users to mistakenly believe that their safety, quality and effectiveness will be equivalent.  This is not the case.  In considering comparative effectiveness, it is critical that surgical facilities and staff verify the origin and authenticity of tourniquet products.


Personalized Tourniquet Pressure Settings

It is well established by evidence in the clinical literature that higher tourniquet pressures are associated with higher probabilities of tourniquet-related injuries.  As a result, modern tourniquet systems aim to use the minimum pressure required to stop blood flow in a limb over the duration of a surgical procedure.  A new method based on Limb Occlusion Pressure (LOP) has been shown to allow individualized, optimal tourniquet pressure settings to be achieved.  LOP  can be defined as the minimum pressure required, at a specific time in a selected tourniquet cuff applied to an individual  patient’s limb at a desired location, to stop the flow of arterial blood into the limb distal to the cuff.   Some advanced surgical tourniquet systems include means to measure LOP automatically, although LOP can also be measured non-automatically by users.   Further information can be found at


Personalized Tourniquet Cuffs

A recent introduction of personalized tourniquet cuffs has also resulted in safer and more effective tourniquet use.  Personalized cuffs are designed to better match patient limb size and shape and thus provide more efficient application of cuff pressure to the limb, allowing lower and safer tourniquet pressures to be used.  The improved fit is a result of the advent of new types of tourniquet cuff designs, in addition to the traditional tourniquet cuff design.  The traditional ‘straight’ tourniquet cuffs are best suited to cylindrical limb shapes.   New types of cuffs are ‘variable contour cuffs’ and allow the user to adapt the shape of the tourniquet cuff to any of a wide range of non-cylindrical (or tapered) limb shapes.  In addition the advent of new cuffs that allow better matching of cuff shapes to individual limb shapes, other advances in tourniquet cuff design have been made for pediatric and bariatric patient populations.  Tourniquet cuffs are now available that are matched specifically to pediatric and bariatric limb sizes and shapes, with comparative effectiveness established in published literature.


Reducing Soft Tissue Injuries with Matching Limb Protection Sleeves

High pressures, high pressure gradients and shear forces applied to skin and soft tissues underlying a tourniquet cuff can cause injuries to the skin and soft tissues.  To reduce the nature and extent of these injuries, studies have been published to determine the relative effectiveness of no protective material, underlying padding, underlying stockinette, and underlying limb protection sleeves that are matched to specific limb sizes and cuff sizes.  Study results present evidence that limb protection sleeves improve safety by protecting the skin underlying tourniquet cuffs during tourniquet use, and further provide evidence that greatest safety is achieved through the use of limb protection sleeves consisting of two-layer material specifically matched to the limb size and cuff size.  (See further information at


Reprocessing tourniquet cuffs

Outpatient surgical facilities are increasingly facing the question of whether, when, and how to reprocess tourniquet cuffs.  The answer requires consideration of patient safety, risk management, and cost.

For tourniquet cuffs designated as ‘reusable’ by manufacturers, the answers are straightforward because instructions on cleaning, inspecting and testing cuffs between uses are usually provided by the manufacturers.  Some facilities are reprocessing and reusing tourniquet cuffs designated as being ‘disposable’ or ‘single use’ by the manufacturers.  In such cases, no instructions on cleaning, inspecting and testing cuffs between uses are provided by the manufacturers.  For any facility considering the reprocessing and reuse of disposable or single-use cuffs, the following precautions should be taken.

  • A tourniquet cuff testing program should be established so that each cuff is thoroughly tested according to a written protocol after each use, and prior to the next use, with the results thoroughly documented.
  • A unique identifier should be used for each cuff so that the number of reuse cycles can be recorded.
  • Each cuff should be replaced after a maximum number of reuse cycles has been reached, to reduce the risk of cuff failure and patient injuries during use.
  • A tourniquet cuff testing protocol should be established in accordance with the recommendations of the original manufacturer of the cuff. At a minimum, the cuff testing protocol should include:

(a) a leak test, including inflating the cuff to a maximum pressure recommended by the manufacturer for a period of time, with the cuff wrapped around a test mandrel or laid flat,
(b) a fastener integrity test, to assure that the fasteners are not degraded to the point of being unsafe at the maximum pressure specified by the manufacturer,
(c) a physical inspection of the cuff to detect blockages of the pneumatic passageway in any portion of the inflatable bladder or tubing due to reprocessing damage or fluid entry,
(d) a visual inspection of the cuff to detect damage or deterioration, including: any warping of stiffener due to inappropriate reprocessing; discoloration or contamination of the cuff surface; damage or deterioration of the cuff connector or inflatable portion; and
(e) written documentation and evaluation of the test results before a decision is made regarding cuff reuse.

The complexity and cost of implementing an appropriate tourniquet cuff testing program may mean that the safe reprocessing of single-use tourniquet cuffs may not be cost-effective.


Emergency and military tourniquets

Some outstanding work by the US Army’s Institute for Surgical Research has led to the introduction and widespread use of tourniquets in combat settings.  It has been proven convincingly that many lives have been saved that would have been lost without the use of tourniquets.   As a result of these successes in combat settings, the same types of tourniquets are now being used increasingly by police, paramedics and other first responders in non-military settings with similar benefits.    Also, based on the proven safety and efficacy of pneumatic tourniquets in surgical settings over many years, new types of compact pneumatic tourniquets are being developed and used in emergency and military settings.  For example, a recent study of comparative effectiveness led to the introduction and use of pneumatic tourniquets by NATO forces. (See for more information.)

Read Full Post | Make a Comment ( None so far )

Lower tourniquet cuff pressure reduces postoperative wound complications after total knee arthroplasty

Posted on March 4, 2013. Filed under: Lower Tourniquet Cuff Pressures, Tourniquet Safety | Tags: , , , |

An interesting paper from the Södersjukhuset Karolinska Institutet, in Stockholm Sweden evaluating the benefit of measuring limb occlusion pressure before surgery was recently published in the December 2012 issue of the Journal of Bone and Joint Surgery [1].

This randomized controlled study of 164 patients demonstrated a significant reduction in tourniquet pressure and more individual cuff pressures among patients when LOP was measured using 140 mm wide contour cuffs.  Although the study method demonstrated no difference in postoperative pain between the LOP and control groups, the authors note that patients with cuff pressures below 225 mmHg had fewer postoperative complications.

The full abstract of the publication in the Journal of Bone and Joint Surgery is given below. [1]

Background: Measurement of limb occlusion pressure before surgery might lead to the use of a lower tourniquet cuff pressure during surgery and thereby reduce the risk of postoperative pain and complications. The primary aim of this study was to investigate whether the limb-occlusion-pressure method reduces the tourniquet cuff pressure used during total knee arthroplasty and if this leads to less postoperative pain compared with that experienced by patients on whom this method is not used. The secondary aim was to investigate whether there were any differences regarding the quality of the bloodless field, range of motion, and postoperative wound complications.

Methods: One hundred and sixty-four patients scheduled to be treated with a total knee arthroplasty were randomized to a control group or to undergo the intervention under study (the limb-occlusion-pressure [LOP] group). In the control group, the tourniquet cuff pressure was based on the patient’s systolic blood pressure and a margin decided by the surgeon (the routine method). In the LOP group, the tourniquet cuff pressure was based on the measurement of the limb occlusion pressure. The primary outcome measure was postoperative pain, and the secondary outcome measures were the quality of the bloodless field, knee motion, and wound-related complications at discharge and two months after surgery.

Results: The tourniquet cuff pressure was significantly lower in the LOP group than in the control group (p < 0.001). We could not demonstrate any differences between the groups regarding postoperative pain or complications, although the number of postoperative complications was relatively high in both groups. However, at discharge forty of the forty-seven patients with a wound complication had had a cuff pressure above 225 mm Hg and at the two-month follow-up evaluation fourteen of the sixteen patients with a wound complication had had a cuff pressure above 225 mm Hg.

Conclusions: The limb-occlusion-pressure method reduces the cuff pressure without reducing the quality of the bloodless field, but there were no differences in outcomes between the groups. An important secondary finding was that patients with a cuff pressure of 225 mm Hg had no postoperative infections and a lower rate of wound complications.

Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.


[1] Olivecrona C, Ponzer S, Hamberg P, Blomfeldt R (2012) Lower tourniquet cuff pressure reduces postoperative wound complications after total knee arthroplasty: a randomized controlled study of 164 patients. J Bone Joint Surg Am 94:2216–2221

Read Full Post | Make a Comment ( None so far )

Liked it here?
Why not try sites on the blogroll...